翻訳と辞書
Words near each other
・ Pollard (surname)
・ Pollard Banknote
・ Pollard Baptist Church
・ Pollard baronets
・ Pollard Glacier
・ Pollard Hopewell
・ Pollard Kot
・ Pollard Meadows, Edmonton
・ Pollard railway station
・ Pollard script
・ Pollard Syndrum
・ Pollard's Chicken
・ Pollard's kangaroo algorithm
・ Pollard's p − 1 algorithm
・ Pollard's rho algorithm
Pollard's rho algorithm for logarithms
・ Pollard, Alabama
・ Pollard, Arkansas
・ Pollard, Kansas
・ Pollard, Washington
・ Pollard-Nelson House
・ Pollarding
・ Pollards Corner, Virginia
・ Pollards Hill
・ Pollards Point
・ Pollari
・ Pollatoomary
・ Pollawat Pinkong
・ Pollaxe
・ Pollaxe (disambiguation)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Pollard's rho algorithm for logarithms : ウィキペディア英語版
Pollard's rho algorithm for logarithms
Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 to solve the discrete logarithm problem, analogous to Pollard's rho algorithm to solve the integer factorization problem.
The goal is to compute \gamma such that \alpha ^ \gamma = \beta, where \beta belongs to a cyclic group G generated by \alpha. The algorithm computes integers a, b, A, and B such that \alpha^a \beta^b = \alpha^A \beta^B. Assuming, for simplicity, that the underlying group is cyclic of order n, we can calculate \gamma as a solution of the equation (B-b)\gamma = (a-A) \pmod.
To find the needed a, b, A, and B the algorithm uses Floyd's cycle-finding algorithm to find a cycle in the sequence x_i = \alpha^ \beta^, where the function f: x_i \mapsto x_ is assumed to be random-looking and thus is likely to enter into a loop after approximately \sqrt} steps. One way to define such a function is to use the following rules: Divide G into three disjoint subsets of approximately equal size: S_0, S_1, and S_2. If x_i is in S_0 then double both a and b; if x_i \in S_1 then increment a, if x_i \in S_2 then increment b.
==Algorithm==
Let G be a cyclic group of order p, and given \alpha, \beta\in G, and a partition G = S_0\cup S_1\cup S_2, let f:G\to G be a map

f(x) = \left\\right.

and define maps g:G\times\mathbb\to\mathbb and h:G\times\mathbb\to\mathbb by

g(x,n) = \left\\right.


h(x,n) = \left\\right.

:Inputs ''a'': a generator of ''G'', ''b'': an element of ''G''
:Output An integer ''x'' such that ''ax = b'', or failure
:# Initialise ''a0'' ← 0
:#::''b0'' ← 0
:#::''x0'' ← 1 ∈ ''G''
:#::''i'' ← 1
:# ''xi'' ← ''f(xi-1)'', ''ai'' ← ''g(xi-1,ai-1)'', ''bi'' ← ''h(xi-1,bi-1)''
:#''x2i'' ← ''f(f(x2i-2))'', ''a2i'' ← ''g(f(x2i-2),g(x2i-2,a2i-2))'', ''b2i'' ← ''h(f(x2i-2),h(x2i-2,b2i-2))''
:# If ''xi'' = ''x2i'' then
:## ''r'' ← ''bi'' - ''b2i''
:## If r = 0 return failure
:## x ← ''r -1 ''(''a2i'' - ''ai'') mod ''p''
:## return x
:# If ''xi'' ≠ ''x2i'' then ''i'' ← ''i+1'', and go to step 2.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Pollard's rho algorithm for logarithms」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.